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Introduction

● Emulates human sight to interpret visual data.
● Methods decode raw pixels into content comprehension. 
● Applications : Identifies objects, Health care, Quality control.

Computer Vision: Unveiling Visual Insights
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Introduction

● Manipulation, analysis, and interpretation of digital images.
● Basic adjustments (like resizing) to advanced tasks (object detection).
● Aims to extract valuable data and improve visual quality.

Image Processing: Enhancing Visual Information
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Introduction

● Quantitative representation of human perception quality.
● Utilizes a blend of human judgement and objective metrics.
● Ensures a balance between perception and technical 

accuracy.

Image Quality Assessment (IQA)
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IQA Metrics for Algorithm Evaluation
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● Used to assess algorithm performance in computer vision.
● Applicable in applications like image compression, 

transmission, and processing.
● Measures effectiveness in preserving visual quality.

Types of IQA

● Full-Reference IQA
● No-Reference IQA
● Reduced-Reference IQA



Distortions
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● Image Distortions : Alterations impacting an image's visual quality and 
content, whether intentional or accidental.

● Essential in IQA : Distortions play a vital role in Image Quality 
Assessment (IQA) by assessing the effects of processes on image fidelity.

● Process Impact : Evaluation of distortions informs how transformations 
impact an image, guiding decisions for processing and enhancing image 
quality.



Types of Distortions
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● Traditional : Gaussian blur, Motion blur, Image compression.

● Super-Resolution : Interpolation method, SR with kernel mismatch.

● Denoising : Mean filtering, Deep-learning-based methods.

● Mixture Restoration : SR of noisy images, SR after denoising.

● GANs based : Noise and Artifacts, Loss of Context, Visual Artifacts.



Usage:

● Evaluates algorithms, compression, etc.
● Measures perceptual aspects.

Mean Opinion Score:

● Quantifies perceived image 
quality.

● Averages human observer ratings.
Advantages:

● Bridges technical and human perception.
● Enhances image processing methods.

Metrics
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Peak Signal-to-Noise Ratio (PSNR):

● The ratio between the highest 
signal power (original image) and 
noise power (difference between 
original and distorted images). 

Metrics
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Structural Similarity Index (SSIM):

● It assesses structural similarity 
between original and distorted 
images, considering luminance, 
contrast, and structure factors. It 
aims to align better with human 
perception compared to PSNR.



Dataset Overview
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Four benchmark image quality datasets are utilized in our experiments: 
1. LIVE (2006)
2. TID2013 (2013)
3. KADID-10k (2019)
4. PIPAL (2020)



Source : https://paperswithcode.com/dataset/pipal-perceptual-iqa-dataset 

● PIPAL training set includes:
○ 200 reference images
○ 40 distortion types
○ 23,000 distortion images
○ Over one million human ratings
○ GAN-based algorithms outputs introduced as 

a new GAN-based distortion type
● The Elo rating system is used to assign Mean 

Opinion Scores (MOS) for the ratings.

PIPAL 
(Perceptual Image Processing ALgorithms IQA Dataset)
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Source : https://arxiv.org/abs/2007.12142 

PIPAL 
(Perceptual Image Processing ALgorithms IQA Dataset)
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https://arxiv.org/abs/2007.12142


Perceptual Image Quality Assessment Challenge:

● Objective : Create a metric to predict the Mean opinion score (MOS).
● Evaluation Metrics : Predicted MOS value for the validation set would 

be compared with the true MOS value using:
○ Pearson linear correlation coefficient (PLCC) 
○ Spearman rank-order correlation coefficients (SROCC) 

● Pre-training Allowance: Pre-training with non-IQA datasets like 
ImageNet is permitted within the competition guidelines.

● Dataset : One must only use PIPAL dataset.
● Disqualification Criteria: Non-fully-referenced methods and models 

using extra labelled IQA datasets will be disqualified from final ranking.

Problem Statement
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1. Backbone 3. Transformer Block

2. Siamese network

Source : https://arxiv.org/abs/2204.09779 

Proposed Solution
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https://arxiv.org/abs/2204.09779


Backbone
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Inception-ResNet-v2

● This model is used as backbone because of 
its Top 1% accuracy in image classification.

● Following schema represents stem of the 
pure Inception-v4 and Inception-ResNet-
v2 networks.

● Pretrained on ImageNet database.

Source : https://arxiv.org/abs/1602.07261 

https://arxiv.org/abs/1602.07261


Backbone
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Inception-ResNet-v2 : 

● Schema for Inception-ResNet-v1 and 
Inception ResNet-v2 networks.This 
schema applies to both networks but the 
underlying components differ.



● Twin CNN Structure : Utilizes a combination of two shallow CNNs with 
a few hidden layers each, designed with flexibility in mind.

● Weight and Bias Sharing : Employs shared parameters between the 
CNNs, ensuring identical weights and biases for both networks. A single 
set of weights is trained and applied to both.

● Loss Function Approach : Implements either triplet or contrastive loss 
functions, contributing to effective learning of shared features within 
the twin CNN framework.

Siamese Network 
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Siamese Network 
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Transformer Block
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Attention is All You Need Transformer :

● No Sequential Processing : Dispenses with 
sequential processing, employing self-
attention to establish global dependencies.

● Parallel Computations : Allows 
parallelization of computations, enhancing 
efficiency and scalability.

● Enhanced Performance : Revolutionizes 
tasks like language translation and image 
analysis, outperforming traditional 
sequential models.

Source : https://arxiv.org/abs/1706.03762 

https://arxiv.org/abs/1706.03762


Workflow Diagram
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1. Backbone 3. Transformer Block

2. Siamese network



● Baseline MUSIQ : In CNN-based 
models (b), images need to be resized 
or cropped to a fixed shape for batch 
training. However, such 
preprocessing can alter image aspect 
ratio and composition, thus impacting 
image quality.

● Patch-based MUSIQ model (a) can 
process the full-size image and 
extract multi-scale features, which 
aligns with the human visual system.

Proposed Solution
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Source : https://arxiv.org/abs/2108.05997 

https://arxiv.org/abs/2108.05997


Proposed Solution
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Results
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Results
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Ablation Study
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Quantitative Comparison
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● Algorithm : Presented a full-reference image quality 
assessment algorithm integrating parallel transformers and 
multi-scale CNN features.

● Transformer Network : Utilized encoders and decoders 
within transformers for quality prediction, enhancing 
accuracy.

● Experimental Validation : Conducted comprehensive 
experiments to showcase the effectiveness of the parallel 
transformers and multi-scale features combination.

Conclusion
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Conclusion
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● Performance : Demonstrated the algorithm's superiority 
over alternative network combinations, highlighting its 
enhanced performance.

● Outperforming State-of-the-Art : Evaluated against current 
image quality assessment methods, the proposed approach 
outperforms in terms of assessment accuracy.



Questions?
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Thank You
31
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